1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
| from prompts import * from construct import * from autogen import ( AssistantAgent, UserProxyAgent, GroupChat, GroupChatManager, config_list_from_json, )
""" The intuition: 1.We use for agents to make the revision task: 1.Task decomposer: Given the original text and the original prompts, and let the agent to generate the promblems and issues strictly (no actual revisions will be made during this process.) The agent needs to return a simple report pointing several problems that the passage have faced. 2.Editor Conservative and Editor Creative Where actual revisions take place. Set different temperatures for the "imagination" !The two editor will not influence each other, works parallelly. 3.integrator: Integrate for both two passage to make better improvements To make better improvements and allow more diversity, we allow the maxlength of current passage is the 1.5*max_length 4.Reporter Check the format and restrict words.( \le maxlength)
2.For the first version, we will just make one round conversation: User -> Task decomposer -> Editor Conservative -> Integrator -> Reporter -> Editor Creative -> 3. To avoid information loss, we will pass total_prompt and the original text for all agents. """
class AutoGenArticleEditor: def __init__(self): create_dirs("log")
self.config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST.json") self.original_article = read_file() self.log_filename = get_log_filename("log") self.max_length = 200
self.task_decomposer = None self.editor1 = None self.editor2 = None self.integrator = None self.reporter = None self.user_proxy = None self.group_chat = None self._setup_agents()
def _setup_agents(self): """Configure all agent instances"""
self.user_proxy = UserProxyAgent( name="Admin", system_message="A human admin who provides the article and requirements.", human_input_mode="NEVER", code_execution_config=False, default_auto_reply="Task received. Passing to the team...", max_consecutive_auto_reply=1, )
self.task_decomposer = AssistantAgent( name="Task_Decomposer", system_message=f""" The total task: {total_prompt}
You are an expert in task decomposition. Your responsibilities: 1. Analyze requirements: \n{requirements}\n 2. Read the original passage, the passage is shown below\n:{self.original_article}\n 3. You need to provide a more specific modification plan based on the requirements, combining it with the original text, but without making specific changes. For example: the relative clause in a certain sentence does not conform to specific grammatical rules and needs to be revised; or the word choice in a certain part is too simplistic and needs to be optimized; or the logic in a certain section needs to be further strengthened. 4. More detailed modification requirements are needed, covering all aspects such as grammar, logic, word choice, and sentence structure.
Response format: ### Specific Requirements [Return specified and modified requirements]
""", llm_config={ "config_list": self.config_list, "temperature": 0.3, }, )
self.editor1 = AssistantAgent( name="Editor_Conservative", system_message=f"""
{total_prompt}\n You will receive the specific requirements from the previous agents.\n The original text: {self.original_article}\n
Attention!!!, particularly for you, as a more meticulous writer, your revisions should focus on the logic and organizational structure of the article, making it more coherent. Provide complete edited text and brief feedback (<50 words). Ensure native English usage and <{1.2*self.max_length} word limit. Response format: ### Version ### [full edited text] ### Feedback ### [comments] """, llm_config={"config_list": self.config_list, "temperature": 0.2}, )
self.editor2 = AssistantAgent( name="Editor_Creative", system_message=f""" {total_prompt}\n For the specified requirements: {specified_requirements}\n The original text: {self.original_article}\n
Attention!!!, Note that, particularly for you, as a free-spirited and imaginative writer, your revisions should focus on the innovative sentence structures and rhetorical techniques in the article, making it more creative and eye-catching. Provide complete edited text and brief feedback (<50 words). Ensure native English usage and <{1.2*self.max_length} word limit. Response format: ### Version ### [full edited text] ### Feedback ### [comments] """, llm_config={"config_list": self.config_list, "temperature": 0.8}, )
self.integrator = AssistantAgent( name="Integrator", system_message=f""" {total_prompt}\n You are the final integrator. Your responsibilities: 1.You will receive three documents: the original article and two modified articles by two editors(one conservative and one creative) 2.You need to take an overall perspective to compare the highlights of the two revised drafts against the original manuscript, and integrate the two articles, taking the strengths from each. 3.!!Attention: You need to make sure your passage (after integrated) is no more than {1.5*self.max_length} words.
Response format: ### Final Version ### [text after integrated] ### Feedback ### [comments] """, llm_config={ "config_list": self.config_list, "temperature": 0.5, }, )
self.reporter = AssistantAgent( name="Reporter", system_message=f""" {total_prompt},\n The original article is: {self.original_article}\n You are the final reporter, you will receive the final scripts modified, and make the last modifications: 1. Make sure all your modifications adhere to the English Usage. 2. Make sure the total length is no more than {self.max_length} words. Response format: ### Final version ### [final text]
### Feedback ### In this section, you are asked to generate a report about the modifications between the final version and the original version. """, llm_config={ "config_list": self.config_list, "temperature": 0.1, }, )
self.group_chat = GroupChat( agents=[ self.user_proxy, self.task_decomposer, self.editor1, self.editor2, self.integrator, self.reporter, ], messages=[], max_round=6, speaker_selection_method="round_robin", )
self.manager = GroupChatManager( groupchat=self.group_chat, llm_config={"config_list": self.config_list} )
def run(self): """Execute the editing workflow""" print_progress("Starting article editing process...")
self.user_proxy.initiate_chat( self.manager, message=f""" Article to edit: {self.original_article} Requirements: {requirements} Please begin editing process. """, )
final_message = self.group_chat.messages[-1]["content"] if "### Final Version ###" in final_message: final_text = ( final_message.split("### Final Version ###")[1] .split("### Feedback ###")[0] .strip() ) write_file(final_text) print_progress(f"Final article saved to Final.txt.") else: print_progress( "Process completed but final version format invalid. Check logs." )
print_progress(f"Conversation log saved to {self.log_filename}")
if __name__ == "__main__": editor = AutoGenArticleEditor() editor.run()
|